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1 Absolute Tensor Product

In this note we present our results on multiple zeta functions with some
applications. This is a survey of our papers [KK1, KK2, KK3, KK4]. We
also refer to [KK5, KK6] for applications more recently proved.

Definition 1 (regularized product) Let m(ρ) ∈ Z (ρ ∈ C) be the multi-
plicity of zeros (or poles) at s = ρ of some meromorphic function Z(s). We
define the regularized product as follows:

∏∐

ρ∈C
(s− ρ)m(ρ) := exp

(
− ∂

∂w

∣∣∣∣
w=0

∑

ρ∈C

m(ρ)

(s− ρ)w

)

in case the series in the right hand side converges in Re(w) À 0 and has an
analytic continuation to w = 0.

The absolute tensor product is defined as follows:

Definition 2 (absolute tensor product) The absolute tensor product of
zeta functions

Zj(s) =
∏∐

ρ∈C
(s− ρ)mj(ρ) (j = 1, ..., r)

is defined by

(Z1 ⊗ · · · ⊗ Zr)(s) :=
∏∐

ρ∈C

(
s− (ρ1 + · · ·+ ρr)

)m(ρ1,...,ρr)
,
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where

m(ρ1, ..., ρr) = m(ρ1) · · ·m(ρr)×




1 if Im(ρj) ≥ 0 (∀j)
(−1)r−1 if Im(ρj) < 0 (∀j)

0 otherwise.

For the background and the motivation of this definition, we refer to the ex-
cellent survey of Manin [M], where the tensor product is named the Kurokawa
product by him.

We introduce the Selberg zeta function for a Riemannian manifold. Let M
be a Riemannian manifold, and P be the set of prime closed geodesics. The
Selberg zeta function of M is defined as follows as long as P is a countable
set and the following Euler product converges:

Definition 3 (Selberg zeta function) We define

ζM(s) :=
∏
p∈P

(1− e−l(p)s)−1,

where l(p) is the length of a geodesic p.

Examples 4 Let M = S1( l
2π

) be the circle with radius l
2π

. Then P consists
of one element which we denote by p. Then

ζM(s) = (1− e−l(p)s)−1.

Especially when l(p) = log q with q a power of some prime number, it follows
that ζM(s) = (1 − q−s)−1 = ζ(s,Fq) which is the Hasse zeta function of the
finite field Fq.

In what follows we denote by p either a prime number or a prime geodesic.
The norm of p is defined by

N(p) =

{
el(p) (p ∈ P )
p (p: a prime number)

.

Here we introduce the notion of generic for real numbers.

Definition 5 (generic) A real number α is called generic if and only if

lim
m→∞

‖mα‖ 1
m = 1,

where ‖x‖ := min{|x− n| : n ∈ Z} for x ∈ R.
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Examples 6

(1) If α ∈ Q, then α is not generic.

(2) If α ∈ (Q ∩ R) \Q, then α is generic.

(3) Let x, y ∈ Q ∩ R>0, y 6= 1. If α =
log x

log y
6∈ Q, then α is generic.

The last example was proved by Baker in his famous work on transcendental
numbers. We recall it as follows:

Baker’s Theorem. Let x, y ∈ Q and assume that log x
log y

6∈ Q. Then for any
m,n ∈ Z, m > 0, ∣∣∣∣m

log x

log y
− n

∣∣∣∣ > m−c

with c depending only on x and y.

Here we calculate the absolute tensor product for Selberg zeta functions for
circles.

Theorem 7 The absolute tensor product of

Zj(s) = (1− e−ljs)−1 (j = 1, 2)

is expressed as follows in Re(s) > 0 with some polynomials Q(s):

(1) When both
l1
l2

and
l1
l2

are generic,

(Z1 ⊗ Z2)(s) = eQ(s)
(
1− e−sl1

) 1
2
(
1− e−sl2

) 1
2

× exp


 1

2i

∞∑

k=1

cot
(
πk l1

l2

)

k
e−l1ks +

1

2i

∞∑
n=1

cot
(
πn l2

l1

)

n
e−l2ns


 .

(2) When l1 = l2 = l,

(Z1 ⊗ Z2)(s) = eQ(s)
(
1− e−ls

)1− ils
2π exp

(
−1

2πi

∞∑
n=1

e−nls

n2

)
.
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In particular when l1 = log p and l2 = log q with some prime powers p
and q, the following theorem holds:

Theorem 8 ([KK2]) Let ζ(s,Fp) = (1 − p−s)−1. We have the following
expressions in Re(s) > 0 with some polynomials Q(s).

(1) When p 6= q,

ζ(s,Fp)⊗ ζ(s,Fq) = eQ(s)
(
1− p−s

) 1
2
(
1− q−s

) 1
2

× exp


 1

2i

∞∑

k=1

cot
(
πk log p

log q

)

k
p−ks +

1

2i

∞∑
n=1

cot
(
πn log q

log p

)

n
q−ns


 .

(2) When p = q,

ζ(s,Fp)⊗ ζ(s,Fp) = eQ(s)
(
1− p−s

)1− is log p
2π exp

(
−1

2πi

∞∑
n=1

p−ns

n2

)
.

Remark 9 (Convergence) The convergence of the power series in the right
hand side of Theorems 7(1) and 8(1) is subtle. When α ∈ R is generic, we
deduce from the definition that |mα − n| > e−εm for any m ≥ 1 and any
n ∈ Z. Thus it holds that cot(πmα) = O(eεm) for any ε > 0. Hence the
series ∞∑

m=1

cot(πmα)xm

absolutely converges in |x| < 1. This is the reason why we need the as-
sumption of genericity. In Theorem 8 we do not need the assumption with
help of the Baker’s theorem. When α = log p

log q
, the Baker’s theorem leads to

|mα − n| > m−c for any m ≥ 1 and n ∈ Z. Then cot(πmα) = O(mc) and
hence the series again absolutely converges in |x| < 1.

Remark 10 (Euler product) Assume Zj has an analytic continuation, a
functional equation and an Euler product expression

Zj(s) =
∏

p

H(j)
p (N(p)−s)
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in Re(s) > σj with H
(j)
p (T ) ∈ 1 + TC[[T ]]. Then Z1 ⊗ · · · ⊗ Zr would have

an Euler product

(Z1 ⊗ · · · ⊗ Zr)(s) = eQ(s)
∏

p1,...,pr

Hp1,...,pr(N(p1)
−s, ..., N(pr)

−s)

with Hp1,...,pr(T1, ..., Tr) ∈ 1 + (T1, ..., Tr)C[[T1, ..., Tr]] and some polynomial

Q(s). Theorem 8 gives an example of this fact where we put H
(1)
p (p−s) =

(1− p−s)−1, H
(2)
q (q−s) = (1− q−s)−1 and the right hand side of Theorem 8

gives the explicit form of Hp,q(p
−s, q−s).

The following Theorem deals with the remaining cases.

Theorem 11 ([KK4]) Let N1 and N2 be pisitive integers and N0 = (N1, N2).
The following expression holds in Re(s) > 0:

ζ(s,FpN1 )⊗ ζ(s,FpN2 )

= exp

(
− 1

2πi

N2
0

N1N2

∞∑
n=1

p−snN1N2/N0

n2
+

(
isN0 log p

2π
− 1

) ∞∑
n=1

p−snN1N2/N0

n

+
∞∑

n=1

p−snN1f1(n) + p−snN2f2(n)

n
+ Qp(s)

)
,

where Qp(s) is a quadratic polynomial in s and

f1(n) =

{
(e2πinN1/N2 − 1)−1 (N2

N0
6 |n)

N2−N0

2N0
(N2

N0
|n)

,

f2(n) =

{
(e2πinN2/N1 − 1)−1 (N1

N0
6 |n)

N1−N0

2N0
(N1

N0
|n)

.

A generalization of the preceding theorems to the case of three zeta functions
was recently done by Akatsuka as follows.
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Theorem 12 ([A]) Let p, q, r be distinct primes. In Re(s) > 0 we have

ζ(s,Fp)⊗ ζ(s,Fq)⊗ ζ(s,Fr)

= eQ(s)(1− p−s)−
1
4 (1− q−s)−

1
4 (1− r−s)−

1
4

exp


−1

4

∞∑
n1=1

cot
(
πn1

log p
log q

)
cot

(
πn1

log p
log r

)

n1 pn1s

− 1

4

∞∑
n2=1

cot
(
πn2

log q
log p

)
cot

(
πn2

log q
log r

)

n2 qn2s

− 1

4

∞∑
n3=1

cot
(
πn3

log r
log p

)
cot

(
πn3

log r
log q

)

n3 r−n3s

+
i

4

∞∑
n1=1

cot
(
πn1

log p
log q

)
+ cot

(
πn1

log p
log r

)

n1 pn1s

+
i

4

∞∑
n2=1

cot
(
πn2

log q
log p

)
+ cot

(
πn2

log q
log r

)

n2 qn2s

+
i

4

∞∑
n3=1

cot
(
πn3

log r
log p

)
+ cot

(
πn3

log r
log q

)

n3 rn3s


 .

Here we present the outline of our proof of Theorem 7. We use the
multiple sine function defined in [KK1]. We recall the definitions as follows:
The multiple Hurwitz zeta function is defined by Barnes [B] as

ζr(s, z, ω) =
∞∑

n1,...,nr=0

(n1ω1 + · · ·+ nrωr + z)−s

for ω = (ω1, ..., ωr) with ωj > 0 and Re(s) > r. The multiple gamma function
is also defined as

Γr(z, ω) = exp

(
∂

∂s
ζr(s, z, ω)

∣∣∣∣
s=0

)
.

We define the multiple sine function [KK1] as

Sr(z, ω) = Γr(z, ω)−1Γr(ω1 + · · ·+ ωr − z, ω)(−1)r

.
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We put for simplicity as Sr(z) := Sr(z, (1, ..., 1)), Γr(z) := Γr(z, (1, ..., 1)),
Γ1(z) = Γ1(z, 1) = Γ(z)/

√
2π and S1(z) = S1(z, 1) = 2 sin(πz).

Lemma 13 The absolute tensor product in Theorem 7 is expressed as fol-
lows:

(Z1 ⊗ Z2)(s) = eQ(s)S2

(
is,

(
2π

l1
,
2π

l2

))
,

where Q(s) is a polynomial of degree at most two, which depends on l1 and
l2.

Proof. The definitions of the absolute tensor product and the multiple sine
functions easily lead us to the identity.

Next we obtain the “Euler product” expression of the double sine func-
tion:

Lemma 14 ([KK2]) If both
ω1

ω2

and
ω2

ω1

are generic and Im(z) > 0,

S2(z, (ω1, ω2))

= exp

(
1

2i

∞∑

k=1

1

k
cot

(
πk

ω2

ω1

)
e
2πik z

ω1 +
1

2i

∞∑
n=1

1

n
cot

(
πn

ω1

ω2

)
e
2πin z

ω2

+
1

2
log

(
1− e

2πi z
ω1

)
+

1

2
log

(
1− e

2πi z
ω2

)

+
πiz2

2ω1ω2

− πi

2

(
1

ω1

+
1

ω2

)
z +

πi

12

(
ω2

ω1

+
ω1

ω2

+ 3

))

Proof. First we establish the “signatured” Poisson summation formula,
counting only zeros in the upper half plane, with the test function

H(t) := (t− z)−2 − (t + z)−2.

By Cauchy’s theorem we have

H(kω1 + nω2) =
1

(2πi)2

∫

C

∫

C

h(s1 + s2)
ξ′1
ξ1

(s1)
ξ′2
ξ2

(s2)ds1ds2 (1)

with ξ1(s) = sinh

(
πs

ω1

)
and ξ2(s) = sinh

(
πs

ω2

)
, and where

C = ∂{s ∈ C | |Re(s)| < α, |s| > α, Im(s) > 0}.
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Calculating the integrals in the right hand side of (1) leads to the signatured
Poisson summation formula:

∑

k,n>0

H(kω1 + nω2) = −1

2

(∑

k>0

H (kω1) +
∑
n>0

H (nω2)

)

− i

2ω1

∑

k>0

cot

(
π

kω2

ω1

)
H̃

(
2πk

ω1

)

− i

2ω2

∑
n>0

cot

(
π

nω1

ω2

)
H̃

(
2πn

ω2

)
− i

2
H̃ ′(0). (2)

Then the left hand side of (2) is equal to

d2

ds2
log S2(z, ω1, ω2).

Thus

S2(z, ω1, ω2) = exp

(∫∫
(2)dzdz

)
,

where we substitute (2) with its right hand side.

2 Application to Special Values

By using the multiple sine function appeared in the proof of our theorems
in the preceding section, we express some unknown special values for the
Riemann zeta and Dirichlet L-functions.

Theorem 15 ([KK3]) Let 0 < n, k ∈ Z and put

a(2n + 1, k) =
k∑

l=1

(−1)k−ll2n

(
2n + 1

k − l

)
,

then we have

ζ(2n + 1) =
22n+1π2n

(−1)n−1(2n)!
log

n∏

k=1

S2n+1(k)a(2n+1,k).
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Examples.

ζ(3) = 4π2 log S3(1),

ζ(5) = −4π4

3
log(S5(1)S5(2)11),

ζ(7) =
8π6

45
log(S7(1)S7(2)57S7(3)302).

Theorem 16 ([KK3]) Let χ be a primitive odd Dirichlet character (mod N).
Then

L(2, χ) =
2πiτ(χ)

N2
log

N−1∏

k=1

(
S2

(
k

N

)N

S1

(
k

N

)k
)χ̄(k)

.

Examples.

L(2,

(−4

∗
)

) =
−π

4
log

(
S2

(
1

4

)4

S1

(
1

4

)
S2

(
3

4

)−4

S1

(
3

4

)−3
)

=
π

4
log

(
2−3S2

(
1

4

)−8
)

,

L(2,

(−3

∗
)

) =
−2
√

3π

9
log

(
S2

(
1

3

)3

S1

(
1

3

)
S2

(
2

3

)−3

S1

(
2

3

)−2
)

=
4
√

3π

9
log

(
3

4
S2

(
1

3

)−3
)

.

Theorem 17 ([KK3]) Let χ be a primitive even Dirichlet character (mod N).

L(3, χ) =
2π2τ(χ)

N3
log

N−1∏

k=1

(
S3

(
k

N

)2N2

S2

(
k

N

)2Nk−3N2

S1

(
k

N

)k2
)χ̄(k)

.
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Examples.

L(3,

(
12

∗
)

) =

√
3π2

432
log

(
S3

(
1

12

)288

S2

(
1

12

)−408

S1

(
1

12

)

S3

(
5

12

)−288

S2

(
5

12

)312

S1

(
5

12

)−25

S3

(
7

12

)−288

S2

(
7

12

)264

S1

(
7

12

)−49

S3

(
11

12

)288

S2

(
11

12

)−164

S1

(
11

12

)121
)

.

3 Application to Γ-factors of Selberg Zeta Func-

tions

Let M = Γ\G/K be a compact locally symmetric space of rank one. In
this section we present the explicit form of the Γ-factors of the Selberg zeta
function of M . When dim M is odd, it has only trivial Γ-factors which are
exponential of some polynomials. So in what follows we assume dim M is
even.

Let M ′ = G′/K be the compact dual symmetric space of M which is
given by the following table:

G K G′ M ′

SO(1, n) SO(n) SO(1 + n) Sn

SU(1, n) SU(n) SU(1 + n) PnC
Sp(1, n) Sp(n) Sp(1 + n) Pn

H

F4 Spin(9) F ′
4 P2

O

Let σ be a unitary representation of Γ. The Selberg zeta function ZM(s, σ)
is defined by Gangolli [G]. It has an analytic continuation to all s ∈ C as a
meromorphic function of order dim M . It also has a functional equation:

ZM(2ρ0 − s, σ) = ZM(s, σ) exp

(
vol(M) dim(σ)

∫ s−ρ0

0

µM(it)dt

)

where ρ0 > 0 and µM(t) is the Plancherel measure.
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Lemma 18 Let S(∆M ′) be the set of eigenvalues of ∆M ′. The spectral zeta
function

ζ

(
s, z,

√
∆M ′ + ρ2

0

)
:=

∑

λ∈S(∆M′ )

(√
λ + ρ2

0 + z

)−s

is holomorphic at s = 0.

Thus we define

∏∐

λ∈S(∆M′ )

(√
λ + ρ2

0 + z

)
= det

(√
∆M ′ + ρ2

0 + z

)
.

Actually

det

(√
∆M ′ + ρ2

0 + s− ρ0

)−1

=





Γ2n(s)Γ2n(s + 1)
(G = SO(1, 2n))

n∏
k=0

Γ2n(s + k)(
n
k)

2

(G = SU(1, n))
2n−1∏
k=0

Γ4n(s + k)
1
2n(2n

k )( 2n
k+1)

(G = Sp(1, n))
Γ16(s)Γ16(s + 1)10Γ16(s + 2)28

×Γ16(s + 3)28Γ16(s + 4)10Γ16(s + 5)
(G = F4)

Theorem 19 ([KK1]) Put

ΓM(s, σ) = det

(√
∆M ′ + ρ2

0 + s− ρ0

)vol(M) dim(σ)(−1)dim M/2

.

Then ẐM(s, σ) = ΓM(s, σ)ZM(s, σ) satisfies the symmetric functional equa-
tion:

ẐM(s, σ) = ẐM(2ρ0 − s, σ).
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Proof. We prove for the case of SO(1, 2n). All other cases are proved by
similar methods. It suffices to show

exp

(∫ s−ρ0

0

µM(it)dt

)(−1)
dim M

2

= S2n(s)S2n(s + 1). (3)

Both sides are equal to 1, when s = ρ0 = n− 1
2
. We compare the logarithmic

derivative of (3). We appeal to the differential equation of Sr(z) which is
obtained in [KK1]:

S ′r
Sr

(z) = (−1)r−1

(
z − 1

r − 1

)
π cot(πz).

Theorem follows by the facts

µM(it) = (−1)nPM(t)π tan(πt)

and

PM(t) =
2

(2n− 1)!
t

n−1∏

k=1

(
t2 −

(
k − 1

2

)2
)

.
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